radiomicsと呼ばれる定量的マッピング技術
携帯、密度、表面テクスチャ、部位に関連した定量的変数8つにより、408名のがん性病変と、319の良性結節を病歴・喫煙状態と独立して鑑別可能という話
optimism-corrected area under the curve 0.939 で かなり正確
さらに、
DECAMP (Diagnosis and Surveillance of Indeterminate Pulmonary Nodules)-1 study
https://clinicaltrials.gov/ct2/show/NCT01785342
・・・を検討中とのこと
Novel high-resolution computed tomography-based radiomic classifier for screen-identified pulmonary nodules in the National Lung Screening Trial
Tobias Peikert , et al.
PLOSone Published: May 14, 2018https://doi.org/10.1371/journal.pone.0196910
7mm以上結節、良性 n=318、悪性 n=408例
least absolute shrinkage and selection operator (LASSO) method という多変量モデルで解析
- Location: vertical location (offset carina centroid z)
- Size: volume estimate (minimum enclosing brick)
- Shape: flatness
- Density: texture analysis (Score Indicative of Lesion/Lung Aggression/Abnormality)
- Surface complexity (maximum shape index and average shape index)
- Surface curvature (average positive mean curvature and minimum mean curvature)
読みこなせてないので原文のまま
0 件のコメント:
コメントを投稿